Schulinternen Lehrplan Apostelgymnasium – Jahrgangsstufe EF

Mathematik

(Fassung vom 23.10.2023)

Inhalt

1			
2			
	2.1	Abfolge verbindlicher Unterrichtsvorhaben	4
	2.2	Grundsätze der fachdidaktischen und fachmethodischen Arbeit	13
	2.3	Grundsätze der Leistungsbewertung und Leistungsrückmeldung	14
	2.4	Lehr- und Lernmittel	15
3 Prüfung und Weiterentwicklung des schulinternen Lehrplans		16	

1 Rahmenbedingungen der fachlichen Arbeit

Die Fachgruppe Mathematik trägt in allen Jahrgangsstufen dazu bei, das im Schulprogramm ausgewiesene Leitbild des Apostelgymnasiums mit den Schwerpunkten *Bildung, Entfaltung, Orientierung* und *Beziehung* umzusetzen.

Die Einführungsphase besuchen in der Regel um die 120 Schülerinnen und Schüler. Der Fachunterricht Mathematik findet in der Einführungsphase wöchentlich in einer Doppelstunde (90 Minuten) und einer Einzelstunde (45 Minuten) statt.

Mathematische Fachinhalte werden häufig mit Lebensweltbezug vermittelt. In der Sekundarstufe II kann verlässlich darauf aufgebaut werden, dass die Verwendung von Kontexten im Mathematikunterricht bekannt ist.

Die Schülerinnen und Schülern haben die Möglichkeit, im Mathematikunterricht ein digitales Endgerät (iPad) zu verwenden. Über das digitale Endgerät wird die Verwendung der TI-Nspire CAS App gewährleistet. In nahezu allen Räumen, in denen Mathematik unterrichtet wird, stehen ein Activpanel und eine Dokumentenkamera zur Verfügung. Damit sind grundlegende Voraussetzungen gegeben, dass der Mathematikunterricht innerhalb des schulischen Gesamtkonzeptes in besonderer Weise dazu beiträgt, die Ansprüche des Medienkompetenzrahmens NRW zu erfüllen.

Auf Fachkonferenzebene sind alle Unterrichtenden im Fach Mathematik durch eine gemeinsame digitale Plattform vernetzt, auf der selbst erstellte Materialien sowie bewährte Unterrichtsvorhaben gesammelt und weiterentwickelt werden können.

Schülerinnen und Schuler aller Klassen- und Jahrgangsstufen werden zur Teilnahme an den vielfaltigen Wettbewerben im Fach Mathematik angehalten und, wo erforderlich, begleitet.

2 Entscheidungen zum Unterricht

2.1. Abfolge verbindlicher Unterrichtsvorhaben

In der nachfolgenden Übersicht über die Unterrichtsvorhaben wird die für alle Lehrerinnen und Lehrer gemäß Fachkonferenzbeschluss verbindliche Verteilung der Unterrichtsvorhaben dargestellt. Die Übersicht dient dazu, für die einzelnen Jahrgangsstufen allen am Bildungsprozess Beteiligten einen schnellen Überblick über Themen bzw. Fragestellungen der Unterrichtsvorhaben unter Angabe besonderer Schwerpunkte in den Inhalten und in der Kompetenzentwicklung zu verschaffen.

Der ausgewiesene Zeitbedarf versteht sich als grobe Orientierungsgröße, die nach Bedarf über- oder unterschritten werden kann. Der schulinterne Lehrplan ist so gestaltet, dass er zusätzlichen Spielraum für Vertiefungen, besondere Interessen von Schülerinnen und Schülern, aktuelle Themen bzw. die Erfordernisse anderer besonderer Ereignisse (z.B. Praktika, Studienfahrten o.Ä.) belässt. Abweichungen über die notwendigen Absprachen hinaus sind im Rahmen des pädagogischen Gestaltungsspielraumes der Lehrkräfte möglich. Sicherzustellen bleibt allerdings auch hier, dass im Rahmen der Umsetzung der Unterrichtsvorhaben insgesamt alle Kompetenzerwartungen des Kernlehrplans Berücksichtigung finden.

Übersicht über die Unterrichtsvorhaben

Einführungsphase

<u>Unterrichtsvorhaben I:</u> Beschreibung der Eigenschaften von Funktionen (E-A1) (Zeitbedarf: ca. 12 Ustd.)

Inhaltsfeld: Funktionen und Analysis (A)

Inhaltliche Schwerpunkte:

- Funktionen: Potenzfunktionen mit ganzzahligen Exponenten, ganzrationale Funktionen
- Eigenschaften von Funktionen: Verlauf des Graphen, Definitionsbereich, Wertebereich, Nullstellen, Symmetrie, Verhalten für x→±∞

Kompetenzerwartungen: Funktionen und Analysis (A)

- bestimmen die Eigenschaften von Potenzfunktionen mit ganzzahligen Exponenten und von ganzrationalen Funktionen,
- (2) lösen Polynomgleichungen, die sich durch einfaches Ausklammern auf lineare oder quadratische Gleichungen zurückführen lassen, ohne Hilfsmittel.

- Ope-(1) wenden grundlegende Kopfrechenfertigkeiten sicher an,
- Ope-(3) führen geeignete Rechenoperationen auf der Grundlage eines inhaltlichen Verständnisses durch,
- Ope-(5) führen Darstellungswechsel sicher aus,
- Ope-(6) führen verschiedene Lösungs- und Kontrollverfahren durch, vergleichen und bewerten diese,
- Ope-(7) nutzen schematisierte und strategiegeleitete Verfahren und wählen diese situationsgerecht aus,
- Ope-(11) nutzen Mathematikwerkzeuge zum Darstellen, Berechnen, Kontrollieren und Präsentieren sowie zum Erkunden,
- Ope-(12) verwenden im Unterricht ein modulares Mathematiksystem (MMS) zum ...
 - Lösen von Gleichungen und Gleichungssystemen auch abhängig von Parametern,
 - o zielgerichteten Variieren von Parametern von Funktionen,
 - Erstellen von Graphen und Wertetabellen von Funktionen,
- Pro-(1) stellen Fragen zu zunehmend komplexen Problemsituationen,
- Pro-(4) erkennen Muster und Beziehungen und generieren daraus Vermutungen,
- Pro-(7) setzen Routineverfahren auch hilfsmittelfrei zur Lösung ein,
- Pro-(10) überprüfen die Plausibilität von Ergebnissen und interpretieren diese vor dem Hintergrund der Fragestellung,
- Pro-(11) analysieren und reflektieren Ursachen von Fehlern,
- Pro-(12) vergleichen und beurteilen verschiedene Lösungswege und optimieren diese mit Blick auf Schlüssigkeit und Effizienz,
- Arg-(2) unterstützen Vermutungen durch geeignete Beispiele,
- Arg-(3) präzisieren Vermutungen mithilfe von Fachbegriffen und unter Berücksichtigung der logischen Struktur.
- Arg-(13) überprüfen, inwiefern Ergebnisse, Begriffe und Regeln verallgemeinert werden können,
- Kom-(3) erläutern mathematische Begriffe in innermathematischen und anwendungsbezogenen Zusammenhängen,
- Kom-(5) formulieren eigene Überlegungen und beschreiben zunehmend komplexe eigene Lösungswege,
- Kom-(6) verwenden die Fachsprache und fachspezifische Notation in angemessenem Umfang,
- Kom-(7) wählen begründet geeignete digitale und analoge Medien und mathematische Darstellungsformen (graphisch-visuell, algebraisch-formal, numerisch-tabellarisch, verbal-sprachlich) aus,
- Kom-(8) wechseln flexibel zwischen mathematischen Darstellungsformen,
- Kom-(10) konzipieren, erstellen und präsentieren analoge und digitale Lernprodukte,
- Kom-(11) greifen Beiträge auf und entwickeln sie weiter.

<u>Unterrichtsvorhaben II:</u> Transformationen von Funktionen und Einfluss von Parametern (E-A2) (**Zeitbedarf**: ca. 12 Ustd.)

Inhaltsfeld: Funktionen und Analysis (A)

Inhaltliche Schwerpunkte:

- Eigenschaften von Funktionen: Verlauf des Graphen, Definitionsbereich, Wertebereich, Nullstellen, Symmetrie, Verhalten für x→±∞
- Transformationen: Spiegelungen an den Koordinatenachsen, Verschiebungen, Streckungen

Kompetenzerwartungen: Funktionen und Analysis (A)

- erkunden und systematisieren den Einfluss von Parametern im Funktionsterm auf die Eigenschaften der Funktion (quadratische Funktionen, Potenzfunktionen, Sinusfunktion),
- (4) wenden Transformationen bezüglich beider Achsen auf Funktionen (ganzrationale Funktionen, Sinusfunktion) an und deuten die zugehörigen Parameter.

- Ope-(11) nutzen Mathematikwerkzeuge zum Darstellen, Berechnen, Kontrollieren und Präsentieren sowie zum Erkunden,
- Ope-(12) verwenden im Unterricht ein modulares Mathematiksystem (MMS) zum ...
 - o zielgerichteten Variieren von Parametern von Funktionen,
 - o erstellen von Graphen und Wertetabellen von Funktionen,
- Mod-(1) erfassen und strukturieren zunehmend komplexe reale Situationen mit Blick auf eine konkrete Fragestellung,
- Mod-(2) treffen begründet Annahmen und nehmen Vereinfachungen realer Situationen vor,
- Mod-(3) übersetzen zunehmend komplexe reale Situationen in mathematische Modelle,
- Mod-(5) erarbeiten mithilfe mathematischer Kenntnisse und Fertigkeiten Lösungen innerhalb des mathematischen Modells,
- Arg-(1) stellen Fragen, die für die Mathematik charakteristisch sind, und stellen begründete Vermutungen über die Existenz und Art von Zusammenhängen auf,
- Arg-(2) unterstützen Vermutungen durch geeignete Beispiele,
- Arg-(3) präzisieren Vermutungen mithilfe von Fachbegriffen und unter Berücksichtigung der logischen Struktur,
- Arg-(13) überprüfen, inwiefern Ergebnisse, Begriffe und Regeln verallgemeinert werden können,
- Kom-(1) erfassen, strukturieren und formalisieren Informationen aus zunehmend komplexen mathematikhaltigen analogen und digitalen Quellen sowie aus mathematischen Fachtexten und Unterrichtsbeiträgen,
- Kom-(7) wählen begründet geeignete digitale und analoge Medien und mathematische Darstellungsformen (graphisch-visuell, algebraisch-formal, numerisch-tabellarisch, verbal-sprachlich) aus,
- Kom-(8) wechseln flexibel zwischen mathematischen Darstellungsformen.

<u>Unterrichtsvorhaben III:</u> Von der durchschnittlichen zur lokalen Änderungsrate (E-A3) (Zeitbedarf: ca. 18 Ustd.)

Inhaltsfeld: Funktionen und Analysis (A)

Inhaltliche Schwerpunkte:

- Grundverständnis des Ableitungsbegriffs: mittlere und lokale Änderungsrate, graphisches Ableiten, Sekante und Tangente
- Differentialrechnung: Ableitungsregeln (Potenz-, Summen- und Faktorregel), Monotonie, Extrempunkte, lokale und globale Extrema, Krümmungsverhalten, Wendepunkte

Kompetenzerwartungen: Funktionen und Analysis (A)

- (5) berechnen mittlere und lokale Änderungsraten und interpretieren sie im Sachkontext,
- (6) erläutern den Zusammenhang zwischen Geschwindigkeit und zurückgelegter Strecke anhand entsprechender Funktionsgraphen,
- (7) erläutern qualitativ auf der Grundlage eines propädeutischen Grenzwertbegriffs an Bsp. den Übergang von der mittleren zur lokalen Änderungsrate und nutzen die *lim*-Schreibweise
- (8) deuten die Ableitung an einer Stelle als lokale Änderungsrate sowie als Steigung der Tangente an den Graphen.
- (9) bestimmen Sekanten-, Tangenten- sowie Normalensteigungen und berechnen Steigungswinkel,
- (10) beschreiben und interpretieren Änderungsraten funktional (Ableitungsfunktion),
- (11) leiten Funktionen graphisch ab und entwickeln umgekehrt zum Graphen der Ableitungsfunktion einen passenden Funktionsgraphen,
- (13) nutzen die Ableitungsregel für Potenzfunktionen mit natürlichem Exponenten.

- Ope-(2) übersetzen symbolische und formale Sprache in natürliche Sprache und umgekehrt,
- Ope-(3) führen geeignete Rechenoperationen auf der Grundlage eines inhaltlichen Verständnisses durch,
- Ope-(4) verwenden Basiswissen, mathematische Regeln und Gesetze sowie Algorithmen bei der Arbeit mit mathematischen Objekten,
- Ope-(5) führen Darstellungswechsel sicher aus,
- Ope-(11) nutzen Mathematikwerkzeuge zum Darstellen, Berechnen, Kontrollieren und Präsentieren sowie zum Erkunden,
- Ope-(12) verwenden im Unterricht ein modulares Mathematiksystem (MMS) zum ...
 - Erstellen von Graphen und Wertetabellen von Funktionen,
- Mod-(5) erarbeiten mithilfe mathematischer Kenntnisse und Fertigkeiten Lösungen innerhalb des mathematischen Modells,
- Mod-(6) beziehen erarbeitete Lösungen wieder auf die reale Situation und interpretieren diese als Antwort auf die Fragestellung,
- Pro-(2) analysieren und strukturieren die Problemsituation,
- Pro-(3) wählen zur Erfassung einer Situation heuristische Hilfsmittel aus (Skizze, informative Figur, Tabelle, experimentelle Verfahren),
- Pro-(4) erkennen Muster und Beziehungen und generieren daraus Vermutungen,
- Pro-(7) setzen Routineverfahren auch hilfsmittelfrei zur Lösung ein,
- Arg-(3) präzisieren Vermutungen mithilfe von Fachbegriffen und unter Berücksichtigung der logischen Struktur,
- Arg-(4) erläutern Zusammenhänge zwischen Fachbegriffen,
- Arg-(5) begründen Lösungswege und nutzen dabei mathematische Regeln und Sätze sowie sachlogische Argumente,
- Arg-(9) erklären vorgegebene Argumentationsketten und mathematische Beweise,
- Arg-(12) beurteilen Argumentationsketten hinsichtlich ihres Geltungsbereichs und ihrer Übertragbarkeit
- Arg-(13) überprüfen, inwiefern Ergebnisse, Begriffe und Regeln verallgemeinert werden können,
- Kom-(2) beschreiben Beobachtungen, bekannte Lösungswege und Verfahren,
- Kom-(3) erläutern mathematische Begriffe in innermathematischen und anwendungsbezogenen Zusammenhängen,
- Kom-(4) erfassen und erläutern mathematische Darstellungen, auch wenn diese nicht vertraut sind,
- Kom-(6) verwenden die Fachsprache und fachspezifische Notation in angemessenem Umfang,
- Kom-(8) wechseln flexibel zwischen mathematischen Darstellungsformen.

<u>Unterrichtsvorhaben IV:</u> Entwicklung und Anwendung von Kriterien und Verfahren zur Untersuchung von Funktionen (E-A4) (**Zeitbedarf**: ca. 18 Ustd.)

Inhaltsfeld: Funktionen und Analysis (A)

Inhaltliche Schwerpunkte:

 Differentialrechnung: Ableitungsregeln (Potenz-, Summen- und Faktorregel), Monotonie, Extrempunkte, lokale und globale Extrema, Krümmungsverhalten, Wendepunkte

Kompetenzerwartungen: Funktionen und Analysis (A)

- (5) berechnen mittlere und lokale Änderungsraten und interpretieren sie im Sachkontext,
- (9) bestimmen Sekanten-, Tangenten- sowie Normalensteigungen und berechnen Steigungswinkel,
- (12) beschreiben das Monotonieverhalten einer Funktion mithilfe der Ableitung,
- (13) nutzen die Ableitungsregel für Potenzfunktionen mit natürlichem Exponenten,
- (14) wenden die Summen- und Faktorregel an und beweisen eine dieser Ableitungsregeln,
- (15) unterscheiden lokale und globale Extrema im Definitionsbereich,
- (16) verwenden das notwendige Kriterium und hinreichende Kriterien zur Bestimmung von Extrem- bzw. Wendepunkten,
- (17) beschreiben das Krümmungsverhalten des Graphen einer Funktion mithilfe der 2. Ableitung,
- (18) nutzen an den unterschiedlichen Darstellungsformen einer Funktion ablesbare Eigenschaften als Argumente, um Lösungswege effizient zu gestalten,
- (19) lösen innermathematische und anwendungsbezogene Problemstellungen mithilfe von ganzrationalen Funktionen.

- Ope-(1) wenden grundlegende Kopfrechenfertigkeiten sicher an,
- Ope-(2) übersetzen symbolische und formale Sprache in natürliche Sprache und umgekehrt,
- Ope-(4) verwenden Basiswissen, mathematische Regeln und Gesetze sowie Algorithmen bei der Arbeit mit mathematischen Objekten,
- Ope-(5) führen Darstellungswechsel sicher aus,
- Ope-(7) nutzen schematisierte und strategiegeleitete Verfahren und wählen diese situationsgerecht aus,
- Ope-(9) verwenden grundlegende Eigenschaften mathematischer Objekte zur Bearbeitung von Problemstellungen,
- Ope-(11) nutzen Mathematikwerkzeuge zum Darstellen, Berechnen, Kontrollieren und Präsentieren sowie zum Erkunden,
- Ope-(12) verwenden im Unterricht ein modulares Mathematiksystem (MMS) zum ...
 - Erstellen von Graphen und Wertetabellen von Funktionen,
 - Ermitteln eines Funktionsterms der Ableitung einer Funktion auch abhängig von Parametern,
- Ope-(13) entscheiden situationsangemessen über den Einsatz mathematischer Hilfsmittel und digitaler Mathematikwerkzeuge und wählen diese begründet aus,
- Mod-(3) übersetzen zunehmend komplexe reale Situationen in mathematische Modelle,
- Mod-(4) ordnen einem mathematischen Modell passende reale Situationen zu,
- Mod-(5) erarbeiten mithilfe mathematischer Kenntnisse und Fertigkeiten Lösungen innerhalb des mathematischen Modells,
- Mod-(6) beziehen erarbeitete Lösungen wieder auf die reale Situation und interpretieren diese als Antwort auf die Fragestellung,
- Mod-(8) benennen Grenzen aufgestellter mathematischer Modelle und vergleichen Modelle bzgl. der Angemessenheit,
- Mod-(9) verbessern aufgestellte Modelle mit Blick auf die Fragestellung,
- Pro-(4) erkennen Muster und Beziehungen und generieren daraus Vermutungen,
- Pro-(5) nutzen heuristische Strategien und Prinzipien (Analogiebetrachtungen, Schätzen und Überschlagen, systematisches Probieren oder Ausschließen, Darstellungswechsel, Zerlegen und Ergänzen, Symmetrien verwenden, Invarianten finden, Zurückführen auf Bekanntes, Zerlegen in Teilprobleme, Fallunterscheidungen, Vorwärts- und Rückwärtsarbeiten, Spezialisieren und Verallgemeinern),
- Pro-(6) wählen geeignete Begriffe, Zusammenhänge, Verfahren sowie Medien und Werkzeuge zur Problemlösung aus,
- Pro-(8) berücksichtigen einschränkende Bedingungen,

- Pro-(9) entwickeln Ideen für mögliche Lösungswege, planen Vorgehensweisen zur Lösung eines Problems und führen Lösungspläne zielgerichtet aus,
- Pro-(10) überprüfen die Plausibilität von Ergebnissen und interpretieren diese vor dem Hintergrund der Fragestellung,
- Pro-(12) vergleichen und beurteilen verschiedene Lösungswege und optimieren diese mit Blick auf Schlüssigkeit und Effizienz,
- Pro-(13) benennen zugrundeliegende heuristische Strategien und Prinzipien und übertragen diese begründet auf andere Problemstellungen,
- Arg-(1) stellen Fragen, die für die Mathematik und stellen charakteristisch sind, begründete Vermutungen über die Existenz und Art von Zusammenhängen auf,
- Arg-(4) erläutern Zusammenhänge zwischen Fachbegriffen,
- Arg-(5) begründen Lösungswege und nutzen dabei mathematische Regeln und Sätze sowie sachlogische Argumente,
- Arg-(6) entwickeln tragfähige Argumentationsketten durch die Verknüpfung von einzelnen Argumenten,
- Arg-(8) verwenden in ihren Begründungen vermehrt logische Strukturen (notwendige und hinreichende Bedingung, Folgerung, Äquivalenz, Und- sowie Oder- Verknüpfungen, Negation, All- und Existenzaussagen),
- Arg-(9) erklären vorgegebene Argumentationsketten und mathematische Beweise,
- Arg-(10) beurteilen, ob vorliegende Argumentationsketten vollständig und fehlerfrei sind,
- Arg-(11) ergänzen lückenhafte und korrigieren fehlerhafte Argumentationsketten,
- Arg-(12) beurteilen Argumentationsketten hinsichtlich ihres Geltungsbereichs und ihrer Übertragbarkeit,
- Kom-(5) formulieren eigene Überlegungen und beschreiben zunehmend komplexe eigene Lösungswege,
- Kom-(7) wählen begründet geeignete digitale und analoge Medien und mathematische Darstellungsformen (graphisch-visuell, algebraisch-formal, numerisch-tabellarisch, verbal-sprachlich) aus,
- Kom-(9) dokumentieren und präsentieren Arbeitsschritte, Lösungswege und Argumentationen vollständig und kohärent,
- Kom-(12) nehmen zu mathematikhaltigen, auch fehlerbehafteten, Aussagen und Darstellungen begründet und konstruktiv Stellung,
- Kom-(13) vergleichen und beurteilen ausgearbeitete Lösungen unter mathematischen Gesichtspunkten hinsichtlich ihrer Verständlichkeit und fachsprachlichen Qualität.

<u>Unterrichtsvorhaben V:</u> Unterwegs in 3D – Koordinatisierung des Raumes und Vektoroperationen (E-G1) (**Zeitbedarf**: ca. 12 Ustd.)

Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G)

Inhaltliche Schwerpunkte:

- Koordinatisierungen des Raumes: Punkte, Ortsvektoren, Vektoren
- · Vektoroperationen: Addition, Multiplikation mit einem Skalar
- Eigenschaften von Vektoren: Länge, Kollinearität

Kompetenzerwartungen: Analytische Geometrie und Lineare Algebra (G)

- (1) wählen geeignete kartesische Koordinatisierungen für die Bearbeitung eines geometrischen Sachverhalts in der Ebene und im Raum,
- (2) stellen geometrische Objekte in einem räumlichen kartesischen Koordinatensystem dar,
- (3) deuten Vektoren geometrisch als Verschiebungen und in bestimmten Sachkontexten als Geschwindigkeit,
- (4) berechnen Längen von Vektoren und Abstände zwischen Punkten mithilfe des Satzes des Pythagoras.
- (5) addieren Vektoren, multiplizieren Vektoren mit einem Skalar und untersuchen Vektoren auf Kollinearität,
- (6) weisen Eigenschaften geometrischer Figuren mithilfe von Vektoren nach.

- Ope-(3) führen geeignete Rechenoperationen auf der Grundlage eines inhaltlichen Verständnisses durch,
- Ope-(4) verwenden Basiswissen, mathematische Regeln und Gesetze sowie Algorithmen bei der Arbeit mit mathematischen Objekten,
- Ope-(8) erstellen Skizzen geometrischer Situationen und wechseln zwischen Perspektiven,
- Ope-(11) nutzen Mathematikwerkzeuge zum Darstellen, Berechnen, Kontrollieren und Präsentieren sowie zum Erkunden,
- Ope-(12) verwenden im Unterricht ein modulares Mathematiksystem (MMS) zum ...
 - Darstellen von geometrischen Situationen im Raum,
- Mod-(1) erfassen und strukturieren zunehmend komplexe reale Situationen mit Blick auf eine konkrete Fragestellung.
- Mod-(2) treffen begründet Annahmen und nehmen Vereinfachungen realer Situationen vor,
- Pro-(2) analysieren und strukturieren die Problemsituation,
- Pro-(3) wählen zur Erfassung einer Situation heuristische Hilfsmittel aus (Skizze, informative Figur, Tabelle, experimentelle Verfahren),
- Arg-(5) begründen Lösungswege und nutzen dabei mathematische Regeln und Sätze sowie sachlogische Argumente,
- Kom-(4) erfassen und erläutern mathematische Darstellungen, auch wenn diese nicht vertraut sind,
- Kom-(6) verwenden die Fachsprache und fachspezifische Notation in angemessenem Umfang,
- Kom-(7) wählen begründet geeignete digitale und analoge Medien und mathematische Darstellungsformen (graphisch-visuell, algebraisch-formal, numerisch-tabellarisch, verbal-sprachlich) aus,
- Kom-(8) wechseln flexibel zwischen mathematischen Darstellungsformen.

<u>Unterrichtsvorhaben VI:</u> Vektoren und Geraden – Bewegungen in den Raum (E-G2) (Zeitbedarf: ca. 15 Ustd.)

Inhaltsfeld: Analytische Geometrie und Lineare Algebra (G)

Inhaltliche Schwerpunkte:

- Vektoroperationen: Addition, Multiplikation mit einem Skalar
- Eigenschaften von Vektoren: Länge, Kollinearität
- Geraden und Strecken: Parameterform
- · Lagebeziehungen von Geraden: identisch, parallel, windschief, sich schneidend
- Schnittpunkte: Geraden

Kompetenzerwartungen: Analytische Geometrie und Lineare Algebra (G)

- (3) deuten Vektoren geometr. als Verschiebungen und in bestimmten Sachkontexten als Geschwindigkeit,
- (6) weisen Eigenschaften geometrischer Figuren mithilfe von Vektoren nach,
- (7) stellen Geraden und Strecken in Parameterform dar,
- (8) interpretieren Parameter von Geradengleichungen im Sachkontext,
- (9) untersuchen Lagebeziehungen von Geraden,
- (10) untersuchen geometrische Situationen im Raum mithilfe digitaler Mathematikwerkzeuge,
- (11) nutzen Eigenschaften von Vektoren und Parametergleichungen von Geraden beim Lösen von innermathematischen und anwendungsbezogenen Problemstellungen,
- (12) lösen lineare Gleichungssysteme im Zusammenhang von Lagebeziehungen von Geraden und interpretieren die jeweilige Lösungsmenge.

- Ope-(1) wenden grundlegende Kopfrechenfertigkeiten sicher an,
- Ope-(6) führen verschiedene Lösungs- und Kontrollverfahren durch, vergleichen und bewerten diese,
- Ope-(8) erstellen Skizzen geometrischer Situationen und wechseln zwischen Perspektiven,
- Mod-(2) treffen begründet Annahmen und nehmen Vereinfachungen realer Situationen vor,
- Mod-(3) übersetzen zunehmend komplexe reale Situationen in mathematische Modelle,
- Mod-(5) erarbeiten mithilfe mathematischer Kenntnisse und Fertigkeiten Lösungen innerhalb des mathematischen Modells,
- Mod-(8) benennen Grenzen aufgestellter mathematischer Modelle und vergleichen Modelle bzgl. der Angemessenheit,
- Pro-(6) wählen geeignete Begriffe, Zusammenhänge, Verfahren sowie Medien und Werkzeuge zur Problemlösung aus,
- Pro-(7) setzen Routineverfahren auch hilfsmittelfrei zur Lösung ein,
- Pro-(8) berücksichtigen einschränkende Bedingungen,
- Pro-(9) entwickeln Ideen für mögliche Lösungswege, planen Vorgehensweisen zur Lösung eines Problems und führen Lösungspläne zielgerichtet aus,
- Pro-(10) überprüfen die Plausibilität von Ergebnissen und interpretieren diese vor dem Hintergrund der Fragestellung,
- Pro-(12) vergleichen und beurteilen verschiedene Lösungswege und optimieren diese mit Blick auf Schlüssigkeit und Effizienz,
- Arg-(4) erläutern Zusammenhänge zwischen Fachbegriffen,
- Arg-(6) entwickeln tragfähige Argumentationsketten durch die Verknüpfung von einzelnen Argumenten,
- Arg-(7) nutzen verschiedene Argumentationsstrategien (Gegenbeispiel, direktes Schlussfolgern, Widerspruch),
- Arg-(8) verwenden in ihren Begründungen vermehrt logische Strukturen (notwendige und hinreichende Bedingung, Folgerung, Äquivalenz, Und- sowie Oder- Verknüpfungen, Negation, All- und Existenzaussagen),
- Kom-(2) beschreiben Beobachtungen, bekannte Lösungswege und Verfahren.
- Kom-(3) erläutern mathematische Begriffe in innermathematischen und anwendungsbezogenen Zusammenhängen,
- Kom-(10) konzipieren, erstellen und präsentieren analoge und digitale Lernprodukte,
- Kom-(11) greifen Beiträge auf und entwickeln sie weiter,
- Kom-(12) nehmen zu mathematikhaltigen, auch fehlerbehafteten, Aussagen und Darstellungen begründet und konstruktiv Stellung.

Summe Einführungsphase: 120 Stunden

Vereinbarungsgemäß in Unterrichtsvorhaben verplant: 87 Stunden

2.2 Grundsätze der fachdidaktischen und fachmethodischen Arbeit

Überfachliche Grundsätze:

- 1.) Schülerinnen und Schüler werden in dem Prozess unterstützt, selbstständige, eigenverantwortliche, selbstbewusste, sozial kompetente und engagierte Persönlichkeiten zu werden.
- 2.) Der Unterricht nimmt insbesondere in der Einführungsphase Rücksicht auf die unterschiedlichen Voraussetzungen der Schülerinnen und Schüler.
- 3.) Geeignete Problemstellungen bestimmen die Struktur der Lernprozesse.
- 4.) Die Unterrichtsgestaltung ist grundsätzlich kompetenzorientiert angelegt.
- 5.) Der Unterricht vermittelt einen kompetenten Umgang mit Medien. Dies betrifft sowohl die private Mediennutzung als auch die Verwendung verschiedener Medien zur Präsentation von Arbeitsergebnissen.
- 6.) Der Unterricht fördert das selbstständige Lernen und Finden individueller Lösungswege sowie die Kooperationsfähigkeit der Schülerinnen und Schüler.
- 7.) Die Schülerinnen und Schüler werden in die Planung der Unterrichtsgestaltung einbezogen.
- 8.) Der Unterricht wird gemeinsam mit den Schülerinnen und Schülern evaluiert.
- 9.) Die Schülerinnen und Schüler erfahren regelmäßige, kriterienorientierte Rückmeldungen zu ihren Leistungen.
- 10.) In verschiedenen Unterrichtsvorhaben werden fächerübergreifende Aspekte berücksichtigt.

Fachliche Grundsätze:

- 11.) Im Unterricht werden fehlerhafte Schülerbeiträge produktiv im Sinne einer Förderung des Lernfortschritts der gesamten Lerngruppe aufgenommen.
- 12.) Der Unterricht ermutigt die Lernenden dazu, auch fachlich unvollständige Gedanken zu äußern und zur Diskussion zu stellen.
- 13.) Die Bereitschaft zu problemlösenden Arbeiten wird durch Ermutigungen und Tipps gefördert und unterstützt.
- 14.) Es wird genügend Zeit eingeplant, in der sich die Lernenden neues Wissen aktiv konstruieren und in der sie angemessene Grundvorstellungen zu neuen Begriffen entwickeln können.
- 15.) Durch regelmäßiges wiederholendes Üben werden grundlegende Fertigkeiten "wachgehalten".
- 16.) Die Lernenden werden zu regelmäßiger, sorgfältiger und vollständiger Dokumentation der von ihnen bearbeiteten Aufgaben angehalten.
- 17.) Im Unterricht wird auf einen angemessenen Umgang mit fachsprachlichen Elementen geachtet.
- 18.) Digitale Medien werden regelmäßig dort eingesetzt, wo sie dem Lernfortschritt dienen.

2.3 Grundsätze der Leistungsbewertung und Leistungsrückmeldung

Siehe "Leistungsbewertung Mathematik" unter https://www.apostelgymnasium.de/index.php/unter-richt/curricula

2.4 Lehr- und Lernmittel

Übersicht über die verbindlich eingeführten Lehr- und Lernmittel, ggf. mit Zuordnung zu Jahrgangsstufen:

• Lambacher Schweizer Einführungsphase – Ausgabe NRW ab 2024 (Klett-Verlag)

Auswahl ergänzender, fakultativer Lehr- und Lernmittel

- Formelsammlung
- TI-Nspire CAS App

3 Prüfung und Weiterentwicklung des schulinternen Lehrplans

Der schulinterne Lehrplan ist ein "dynamisches Dokument". Die getroffenen Absprachen werden stetig überprüft, um gegebenenfalls Modifikationen vornehmen zu können. Die Fachschaft trägt durch diesen Prozess zur Qualitätsentwicklung und damit zur Qualitätssicherung des Faches bei. Die Überprüfung der Vereinbarungen erfolgt regelmäßig.